Disease-associated MRE11 mutants impact ATM/ATR DNA damage signaling by distinct mechanisms.

نویسندگان

  • Joshua A Regal
  • Todd A Festerling
  • Jeffrey M Buis
  • David O Ferguson
چکیده

DNA double-strand breaks (DSBs) can lead to instability of the genome if not repaired correctly. The MRE11/RAD50/NBS1 (MRN) complex binds DSBs and initiates damage-induced signaling cascades via activation of the ataxia-telangiectasia mutated (ATM) and ataxia-telangiectasia- and rad3-related (ATR) kinases. Mutations throughout MRE11 cause ataxia-telangiectasia-like disorder (ATLD) featuring cerebellar degeneration, and cancer-predisposition in certain kindreds. Here, we have examined the impact on DNA damage signaling of several disease-associated MRE11A alleles to gain greater understanding of the mechanisms underlying the diverse disease sequelae of ATLD. To this end, we have designed a system whereby endogenous wild-type Mre11a is conditionally deleted and disease-associated MRE11 mutants are stably expressed at physiologic levels. We find that mutations in the highly conserved N-terminal domain impact ATM signaling by perturbing both MRE11 interaction with NBS1 and MRE11 homodimerization. In contrast, an inherited allele in the MRE11 C-terminus maintains MRN interactions and ATM/ATR kinase activation. These findings reveal that ATLD patients have reduced ATM activation resulting from at least two distinct mechanisms: (i) N-terminal mutations destabilize MRN interactions, and (ii) mutation of the extreme C-terminus maintains interactions but leads to low levels of the complex. The N-terminal mutations were found in ATLD patients with childhood cancer; thus, our studies suggest a clinically relevant dichotomy in MRE11A alleles. More broadly, these studies underscore the importance of understanding specific effects of hypomorphic disease-associated mutations to achieve accurate prognosis and appropriate long-term medical surveillance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distinct roles of the ATR kinase and the Mre11-Rad50-Nbs1 complex in the maintenance of chromosomal stability in Arabidopsis.

Signaling of chromosomal DNA breaks is of primary importance for initiation of repair and, thus, for global genomic stability. Although the Mre11-Rad50-Nbs1 (MRN) complex is the first sensor of double-strand breaks, its role in double-strand break (DSB) signaling is not fully understood. We report the absence of γ-ray-induced, ATM/ATR-dependent histone H2AX phosphorylation in Arabidopsis thalia...

متن کامل

The Drosophila Nbs protein functions in multiple pathways for the maintenance of genome stability.

The Mre11/Rad50/Nbs (MRN) complex and the two protein kinases ATM and ATR play critical roles in the response to DNA damage and telomere maintenance in mammalian systems. It has been previously shown that mutations in the Drosophila mre11 and rad50 genes cause both telomere fusion and chromosome breakage. Here, we have analyzed the role of the Drosophila nbs gene in telomere protection and the ...

متن کامل

Mre11 Nuclease Activity Has Essential Roles in DNA Repair and Genomic Stability Distinct from ATM Activation

The Mre11/Rad50/NBS1 (MRN) complex maintains genomic stability by bridging DNA ends and initiating DNA damage signaling through activation of the ATM kinase. Mre11 possesses DNA nuclease activities that are highly conserved in evolution but play unknown roles in mammals. To define the functions of Mre11, we engineered targeted mouse alleles that either abrogate nuclease activities or inactivate...

متن کامل

Distinct roles of ATR and DNA-PKcs in triggering DNA damage responses in ATM-deficient cells.

The cellular response to DNA double-strand breaks involves direct activation of ataxia telangiectasia mutated (ATM) and indirect activation of ataxia telangiectasia and Rad3 related (ATR) in an ATM/Mre11/cell-cycle-dependent manner. Here, we report that the crucial checkpoint signalling proteins-p53, structural maintainance of chromosomes 1 (SMC1), p53 binding protein 1 (53BP1), checkpoint kina...

متن کامل

The fission yeast Rad32(Mre11)-Rad50-Nbs1 complex acts both upstream and downstream of checkpoint signaling in the S-phase DNA damage checkpoint.

The Mre11-Rad50-Nbs1 (MRN) heterotrimer plays various and complex roles in DNA damage repair and checkpoint signaling. Its role in activating Ataxia-Telangiectasia Mutated (ATM), the central checkpoint kinase in the metazoan double-strand break response, has been well studied. However, its function in the checkpoint independent of ATM activation, as well as functions that are completely checkpo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human molecular genetics

دوره 22 25  شماره 

صفحات  -

تاریخ انتشار 2013